Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition
نویسندگان
چکیده
The relative roles of ectomycorrhizal (ECM) and saprotrophic communities in controlling the decomposition of soil organic matter remain unclear. We tested the hypothesis that ECM community structure and activity influences the breakdown of nutrient-rich biopolymers in soils, while saprotrophic communities primarily regulate the breakdown of carbon-rich biopolymers. To test this hypothesis, we used high-throughput techniques to measure ECM and saprotrophic community structure, soil resource availability, and extracellular enzyme activity in whole soils and on ECM root tips in a coastal pine forest. We found that ECM and saprotroph richness did not show spatial structure and did not co-vary with any soil resource. However, species richness of ECM fungi explained variation in the activity of enzymes targeting recalcitrant N sources (protease and peroxidase) in bulk soil. Activity of carbohydrateand organic Ptargeting enzymes (e.g. cellobiohydrolase, b-glucosidase, a-glucosidase, hemicellulases, Nacetyl-glucosaminidase, and acid phosphatase) was correlated with saprotroph community structure and soil resource abundance (total soil C, N, and moisture), both of which varied along the soil profile. These observations suggest independent roles of ECM fungi and saprotrophic fungi in the cycling of N-rich, Crich, and P-rich molecules through soil organic matter. Enzymatic activity on ECM root tips taken from the same soil cores used for bulk enzyme analysis did not correlate with the activity of any enzyme measured in the bulk soil, suggesting that ECM contributions to larger-scale soil C and nutrient cycling may occur primarily via extramatrical hyphae outside the rhizosphere. Published by Elsevier Ltd.
منابع مشابه
Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors
Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic...
متن کاملDecomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model
Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized that ectomycorrhizal fungi can also be active decomposers when plant carbon allocation to fungi is...
متن کاملEvidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition.
With improvements in molecular techniques, identification of taxa in mycorrhizal ecology has expanded from fruitbodies to mycorrhizal roots to extraradical hyphae (Anderson & Cairney, 2004). These molecular techniques are, in general, equally applicable to saprotrophic fungi, although this important functional group has received relatively little focus in community studies (Allmer et al ., 2006...
متن کاملThe Irreversible Loss of a Decomposition Pathway Marks the Single Origin of an Ectomycorrhizal Symbiosis
Microbial symbioses have evolved repeatedly across the tree of life, but the genetic changes underlying transitions to symbiosis are largely unknown, especially for eukaryotic microbial symbionts. We used the genus Amanita, an iconic group of mushroom-forming fungi engaged in ectomycorrhizal symbioses with plants, to identify both the origins and potential genetic changes maintaining the stabil...
متن کاملChange in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.
Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding wi...
متن کامل